COLLECTION
DE
MÉMOIRES
RELATIFS À LA
PHYSIQUE,
PUBLIÉS PAR
LA SOCIÉTÉ FRANÇAISE DE PHYSIQUE.

TOME II.
MÉMOIRES SUR L'ÉLECTRODYNAMIQUE.
PREMIÈRE PARTIE.

PARIS,
GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE
DU BUREAU DES LONGITUDES, DE L'ÉCOLE POLYTECHNIQUE,
Quai des Augustins, 55.
1885
XX.

SECOND MÉMOIRE SUR LA DÉTERMINATION DE LA FORMULE QUI RÉPRESÈNTE L'ACTION MUTUELLE DE DEUX PORTIONS INFINIMENT PETITES DE CONDUCTEURS VOLTAIQUES.

PAR M. A. AMPÈRE (1).

(Lu à l'Académie royale des Sciences, le 16 juin 1822.)

Lorsqu'on vient à découvrir un nouveau genre d'action jusqu'ici inconnu, le premier objet du physicien doit être de déterminer les principaux phénomènes qui en résultent, et les circonstances où ils se produisent; il reste ensuite à trouver le moyen d'y appliquer le calcul en représentant par des formules la valeur des forces qu'exercent les unes sur les autres les particules des corps où ce genre d'action se manifeste. Dès que j'eus reconnu que deux conducteurs voltaïques agissaient l'un sur l'autre, tantôt en s'attirant, tantôt en se repoussant, et que j'eus distingué et décrit les actions qu'ils exercent dans les différentes situations où ils peuvent se trouver l'un à l'égard de l'autre, je cherchai à exprimer de cette manière la valeur de la force attractive ou répulsive de deux de leurs éléments ou parties infiniment petites, afin de pouvoir en déduire, par les méthodes connues d'intégration, l'action qui a lieu entre deux portions de conducteurs données de forme et de situation.

L'impossibilité de soumettre directement à l'expérience des portions infiniment petites du circuit voltaïque oblige nécessairement à partir d'observations faites sur des fils conducteurs de grandeur finie, et il faut satisfaire à ces deux conditions que les observations soient susceptibles d'une grande précision, et qu'elles soient propres à déterminer la valeur de l'action mutuelle de deux portions infiniment petites. C'est ce qu'on peut obtenir de deux

(1) Annales de Chimie et de Physique, t. XX, 398-419, et Recueil d'Obs. elect., p. 299.
mises : l'une consiste à mesurer avec la plus grande exactitude des valeurs de l'action mutuelle de deux portions d'une grandeur finie, en les plaçant successivement, l'une par rapport à l'autre, à différentes distances et dans différentes positions ; car il est évident qu'ici l'action ne dépend pas seulement de la distance ; il faut ensuite faire une hypothèse sur la valeur de l'action mutuelle de deux portions infiniment petites, en conclure celle de l'action qui doit en résulter pour les conducteurs de grandeur finie sur lesquels on a opéré, et modifier l'hypothèse jusqu'à ce que les résultats du calcul s'accordent avec ceux de l'observation. C'est ce procédé que je m'étais d'abord proposé de suivre, comme je l'ai expliqué en détail dans un Mémoire lu à l'Académie des Sciences le 9 octobre 1820 (1) ; et, quoiqu'il ne nous conduise à la vérité que par la voie indirecte des hypothèses, il n'en est pas moins précieux, puisqu'il est souvent le seul qui puisse être employé dans les recherches de ce genre. Un des membres de cette Académie, dont les travaux ont embrassé toutes les parties de la Physique, l'a parfaitement décrit dans la Notice Sur l'aimantation imprimée aux métaux par l'électricité en mouvement, qu'il nous a lue le 2 avril 1821, en l'appelant « un travail en quelque sorte de divination, qui est la fin de presque toutes les recherches physiques » (2).

Mais il existe une autre manière d'atteindre plus directement le même but : c'est celle que j'ai suivie depuis et qui m'a conduit au résultat que je désirais ; elle consiste à constater par l'expérience que les parties mobiles des conducteurs sont, en certains cas, exactement en équilibre entre des forces égales ou des moments de rotation égaux, quelle que soit d'ailleurs la forme de la partie mobile, et de chercher directement, à l'aide du calcul, quelle doit être la valeur de l'action mutuelle de deux portions infiniment petites, pour que l'équilibre soit en effet indépendant de la forme de la partie mobile.

C'est ainsi que j'ai déterminé cette valeur en combinant deux expériences de ce genre : l'une, que j'ai décrite dans un Mémoire

(1) Ce Mémoire n'a pas été publié à part, mais les principaux résultats en ont été insérés dans celui que j'ai publié, en 1820, dans le tome XV des Annales de Chimie et de Physique (voir article 11, p. 39). (A)

(2) Voir le Journal des Savants, avril 1821, p. 233. (A.)
lu à l'Académie le 26 décembre 1820, et dans ce recueil, pages 216 et suivantes (1), l'autre dont je viens de constater le résultat avec toute l'exactitude possible.

Ce dernier procédé ne peut être employé que quand la nature de l'action qu'on étudie donne lieu à des cas d'équilibre indépendants de la forme des corps; il est, par conséquent, beaucoup plus restreint dans ses applications que celui dont j'ai parlé tout à l'heure; mais, puisque les conducteurs voltaïques présentent des circonstances où cette sorte d'équilibre a lieu, il est naturel de le préférer à tout autre, comme plus direct et plus simple. Il y a d'ailleurs, à l'égard de l'action exercée par ces corps, un motif bien plus décisif encore de le suivre dans les recherches relatives à la détermination des forces qui la produisent: c'est l'extrême difficulté des expériences où l'on se proposerait, par exemple, de mesurer ces forces par le nombre des oscillations d'un corps soumis à leur action; cette difficulté vient de ce que, quand on fait agir un conducteur fixe sur une portion mobile du circuit voltaïque, les parties de l'appareil nécessaire pour établir les communications de cette portion mobile agissent sur elle en même temps que le conducteur fixe et altèrent ainsi les résultats des expériences: je crois cependant être parvenu à la surmonter dans un appareil propre à mesurer l'action mutuelle de deux conducteurs circulaires concentriques, l'un fixe et l'autre mobile, par le nombre des oscillations de ce dernier, et en faisant varier la distance par l'emploi de différents conducteurs fixes, dans lesquels on ferait passer successivement le courant électrique. Je décrirai ailleurs cet appareil, que je n'ai point encore fait exécuter.

Il est vrai qu'on ne rencontre pas les mêmes obstacles quand on mesure de la même manière l'action d'un fil conducteur sur un aimant; mais ce moyen ne peut être employé quand il s'agit de l'action que deux conducteurs voltaïques exercent l'un sur l'autre, et qui doit être le premier objet de nos recherches dans l'étude des nouveaux phénomènes. En effet, les expériences que j'ai communiquées à l'Académie au mois de décembre dernier ont prouvé que l'hypothèse par laquelle les physiciens de la Suède et de l'Allemagne avaient cru pouvoir expliquer l'action que j'ai décou-

(1) Voir p. 251 et suivantes du présent Volume.
verte entre deux fils conducteurs, en les considérant comme des
assemblages de petits aimants situés dans des directions perpen-
diculaires à leur longueur, est en opposition avec les faits, puisque
deux assemblages d'aimants ainsi disposés, quelque forme qu'on
leur donne, ne peuvent, ni d'après la théorie ordinaire des phé-
nomènes magnétiques, ni d'après celle que j'ai cru devoir lui sub-
stituer, ni d'après des expériences variées que j'ai faites à ce sujet,
il y a quelques mois, produire le mouvement continu toujours
dans le même sens et la production de force vive qui se manifeste
alors, d'où il suit nécessairement qu'il faut ou regarder l'action
découverte par M. Oersted entre un conducteur voltaïque et un
aimant comme tout à fait indépendante de celle que j'ai reconnue
entre deux fils conducteurs, ou l'y ramener en considérant, ainsi
que je l'ai fait, non pas les conducteurs comme des assemblages
d'aimants transversaux, mais au contraire les aimants comme
devant leurs propriétés à une disposition de l'électricité autour
de chacune de leurs particules, identique à celle de l'électricité
dans les fils conducteurs (1), disposition que j'ai désignée sous le

(1) Il semble d'abord singulier que les mêmes faits, qui s'opposent absolument
da ce qu'on attribue à l'amantation transversale toutes les propriétés des conduc-
teurs voltaïques, ne s'opposent pas à ce qu'on explique toutes celles des aimants,
en les considérant comme des assemblages de courants électriques; j'ai expliqué la
cause de cette différence dans un exposé sommaire des progrès de cette branche de
la Physique, pendant l'année 1831, que j'ai lu à la séance publique de l'Académie
du 8 avril 1832, et qui a été inséré dans le cahier de février 1832 du Journal de
Physique, p. 199 et suivantes de ce Recueil (II. XVIII); elle vient de ce que, dans
la première hypothèse, on devrait nécessairement pouvoir imiter, en employant
seulement des aimants disposés convenablement, tous les phénomènes produits par
l'action mutuelle de deux conducteurs, ce qui n'a pas lieu à l'égard du mouvement
continu, toujours dans le même sens, qu'on ne peut obtenir qu'avec deux conducteurs
ou avec un conducteur et un aimant; tandis que, dans ma manière de concevoir
l'action magnétique, les courants électriques qui entourent chaque particule d'un
aimant formant des circuits fermés, on ne doit pouvoir remplacer un conducteur
voltaïque par un ou plusieurs aimants qu'à l'égard des phénomènes que le con-
ducteur produit également, soit qu'il forme ou non un circuit fermé; or, dans
l'expérience où j'ai obtenu le mouvement toujours dans le même sens par l'action
mutuelle de deux fils conducteurs, il faut nécessairement, comme je l'expliquerai
ailleurs plus en détail, que l'un d'eux ne forme pas un circuit complètement
fermé; d'où il suit qu'on peut encore obtenir, comme M. Faraday l'a fait le pre-
mer, ce singulier mouvement en employant un aimant à la place de l'autre con-
ducteur, mais jamais en remplaçant les deux conducteurs par des aimants; ce qui
s'observe, en effet, dans les expériences que j'ai faites à ce sujet et que chacun
peut aisément répeter.
nom de courant électrique, comme l'ont fait la plupart des physiciens qui ont écrit sur ce sujet : or il est clair que si l'action d'un fil conducteur sur un aimant était due à une autre cause que celle qui a lieu entre deux conducteurs, les expériences faites sur la première ne pourraient rien apprendre relativement à la seconde, et que si les aimants ne doivent leurs propriétés qu'à des courants électriques entourant chacune de leurs particules, il faudrait, pour pouvoir calculer les effets qu'ils doivent produire, que l'on sût s'ils ont la même intensité près de la surface de l'aimant et dans son intérieur, ou suivant quelle loi varie cette intensité ; si les plans de ces courants sont partout perpendiculaires à l'axe du barreau aimanté, comme je l'avais d'abord supposé, ou si l'action mutuelle des courants d'un même aimant leur donne une situation d'autant plus inclinée à cet axe qu'ils en sont à une plus grande distance, et qu'ils s'écartent davantage de son milieu, comme le prouve la différence qu'on remarque entre la situation des pôles d'un aimant et celles des points qui jouissent des mêmes propriétés dans un fil conducteur roulé en hélice (1).

(1) Je crois devoir insérer la note suivante, qui est extraite de l'Analyse des travaux de l'Académie pendant l'année 1821, publiée le 8 avril 1822. (Voir la partie mathématique de cette Analyse, p. 22 et 23.)

« La principale différence entre la manière d'agir d'un aimant et d'un conducteur voltaïque, dont une partie est roulée en hélice autour de l'autre, consiste en ce que les pôles du premier sont situés plus près du milieu de l'aimant que ses extrémités, tandis que les points qui présentent les mêmes propriétés dans l'hélice sont exactement placés à ses extrémités : c'est ce qui doit arriver quand l'intensité des courants de l'aimant va en diminuant de son milieu vers ses extrémités. Mais M. Ampère a reconnu, depuis, une autre cause qui peut aussi déterminer cet effet. Après avoir conclu de ses nouvelles expériences que les courants électriques d'un aimant existent autour de chacune de ses particules, il lui a été aisé de voir qu'il n'est pas nécessaire de supposer, comme il l'avait fait d'abord, que les plans de ces courants sont partout perpendiculaires à l'axe de l'aimant ; leur action mutuelle doit tendre à donner à ces plans une situation inclinée à l'axe, surtout vers ses extrémités, en sorte que les pôles, au lieu d'y être exactement situés, comme ils devraient s'y trouver, d'après les calculs déduits des formules données par M. Ampère, lorsqu'on suppose tous les courants de même intensité et dans des plans perpendiculaires à l'axe, doivent se rapprocher du milieu de l'aimant d'une partie de sa longueur, d'autant plus grande, que les plans d'un plus grand nombre de courants sont ainsi inclinés et qu'ils le sont davantage, c'est-à-dire, d'autant plus que l'aimant est plus épais, relativement à sa longueur, ce qui est conforme à l'expérience. Dans les fils conducteurs pliés en hélice, et dont une partie revient par l'axe pour détruire l'effet de la partie des courants de chaque spire, qui agit comme s'ils étaient parallèles à l'axe, les deux circonstances qui, d'après ce que
C'est donc par l'observation des cas d'équilibre indépendants de la forme des conducteurs qu'il convient de déterminer la force dont nous cherchons la valeur. J'en ai reconnu trois: le premier consiste dans l'égalité des valeurs absolues de l'attraction et de la répulsion qu'on produit en faisant passer alternativement, en deux sens opposés, le même courant dans un conducteur fixe dont on ne change ni la situation, ni la distance au corps sur lequel il agit. Cette égalité résulte de la simple observation que deux portions égales d'un même fil conducteur recouvertes de soie pour en empêcher la communication, tordues ensemble de manière à former, l'une autour de l'autre, deux hélices dont toutes les parties sont égales, et parcourues par un même courant électrique, l'une dans un sens et l'autre en sens contraire, n'exercent aucune action,

soit sur un conducteur mobile, soit sur un aimant; on peut aussi la constater à l'aide du conducteur mobile qu'on voit dans la fig. 9 de la Pl. I du Tome XVIII des Annales de Chimie et de Physique, relative à la description d'un de mes appareils électrodynamiques, et qui est représenté ici (fig. 1). On place, pour cela, un peu au-dessous de la partie inférieure de ce conducteur, et dans une direction quelconque, un conducteur rectiligne horizontal, plusieurs fois redoublé AB, de

nous venons de dire, n'ont pas nécessairement lieu dans les aimants, existent, au contraire, nécessairement dans ces fils; aussi observe-t-on que les hélices ont des pôles semblables à ceux des aimants, mais placés exactement à leurs extrémités, comme le donne le calcul. »

(A.)
manièrë que le milieu de sa longueur et de son épaisseur soit dans la verticale qui passe par la pointe x et autour de laquelle tourne librement le conducteur mobile. On voit alors que ce conducteur reste dans la situation où on le place; ce qui prouve qu'il y a équilibre entre les actions exercées par le conducteur fixe sur les deux portions égales et opposées du circuit voltaïque $bcde$, $b'c'd'e'$, qui ne diffèrent que parce que, dans l'une, le courant électrique va en s'approchant du conducteur fixe AB, et, dans l'autre, en s'en éloignant, quel que soit d'ailleurs l'angle formé par la direction de ce dernier conducteur avec le plan du conducteur mobile: or, si l'on considère d'abord les deux actions exercées entre chacune de ces portions de circuit voltaïque et la moitié du conducteur AB dont elle est la plus voisine, et ensuite les deux actions entre chacune d'elles et la moitié du même conducteur dont elle est la plus éloignée, on verra aisément : 1° que l'équilibre dont nous venons de parler ne peut avoir lieu pour toutes les valeurs de cet angle, qu'autant qu'il y a séparément équilibre entre les deux premières actions et les deux dernières; 2° que si l'une des deux premières est attractive parce que les côtés de l'angle aigu formé par les portions de conducteur entre lesquelles elle a lieu sont parcourus dans le même sens par le courant électrique, l'autre sera répulsive, parce qu'elle aura lieu entre les deux côtés de l'angle égal opposé au sommet, qui sont parcourus en sens contraires par le même courant, en sorte qu'il faudra d'abord, pour qu'il y ait équilibre entre elles, que cette attraction et cette répulsion, qui tendent à faire tourner le conducteur mobile, l'une dans un sens et l'autre dans le sens opposé, soient égales en elles; et ensuite que les deux dernières actions, l'une attractive et l'autre répulsive, qui s'exercent entre les côtés des deux angles obtus opposés au sommet qui sont les suppléments des premiers, soient aussi égales entre elles. Il est inutile de remarquer que ces actions sont réellement les sommes des produits des forces qui agissent sur chaque portion infiniment petite du conducteur mobile, multipliées par leur distance à la verticale autour de laquelle il peut librement tourner; mais, comme les distances à cette verticale des portions infiniment petites correspondantes des deux branches $bcde$, $b'c'd'e'$ sont toujours égales entre elles, l'égalité des moments rend nécessaire celle des forces.
Le second des trois cas généraux d’équilibre est celui que j’ai remarqué à la fin de l’année 1820; il consiste dans l’égalité d’action, sur un conducteur rectiligne mobile, de deux conducteurs fixes, situés à égales distances du conducteur mobile, l’un rectiligne et l’autre plié et contourné d’une manière quelconque, quelles que soient d’ailleurs les sinuosités formées par ce dernier. On peut voir, dans les Notes sur l’exposé sommaire des expériences électrodynamiques (1), faites par différents physiciens en 1821 (2), la description de l’appareil avec lequel j’ai vérifié cette égalité d’action par des expériences susceptibles d’une grande précision. J’ai démontré, dans un Mémoire lu, le 4 décembre 1820, à l’Académie des Sciences (3), en partant de ce fait ainsi constaté, que si l’on nomme ρ une fonction des trois angles qui déterminent la situation respective de deux portions infiniment petites de courants électriques, proportionnelle à la force qu’elles exercent l’une sur l’autre à une distance déterminée, lorsqu’on fait varier cette situation et qu’on désigne ces trois angles par α, β, γ, α et β étant ceux que les directions des deux petites portions forment avec la ligne qui en joint les milieux, et γ l’inclinaison mutuelle des plans de ces deux angles, la fonction ρ sera nécessairement de la forme

$$\sin \alpha \sin \beta \cos \gamma + k \cos \alpha \cos \beta,$$

k étant un coefficient constant (4). Il me restait à déterminer la valeur de ce coefficient; je n’y réussis pas dans le temps, je vis seulement, d’après des expériences que j’ai communiquées à l’Académie le 11 décembre 1820, que cette valeur paraissait être d’autant plus petite que les expériences que je faisais pour la déter-

(1) Voir ce que je dis ai dit sur la préférence que j’ai donnée à cette dénomination, Expériences électrodynamiques, dans les notes qui sont au bas des pages 200 et 237 de ce recueil. (A.)
Voir pages 192 et 239 du présent Volume.
(2) Voir art. XVIII.
(3) Voir art. VII, p. 128.
(4) La quantité que je représente ici par k est désignée par $\frac{m}{n}$ dans le cahier de septembre du Journal de Physique, année 1820, où j’ai inséré la démonstration dont il est ici question et qu’on trouve, avec plus de détail, dans ce recueil, p. 225. (Voir art. XVIII, p. 261.) (A.)
miner étaient plus exactes. Comme je ne soupçonnais pas alors que cette valeur fut négative, j'en conclus seulement qu'elle pouvait être regardée comme nulle. J'ai trouvé depuis un troisième cas d'équilibre indépendant de la forme du fil conducteur, d'où résulte une relation entre \(k \) et l'exposant de la puissance de la distance de deux portions infiniment petites de courants électriques, à laquelle leur action mutuelle est réciproquement proportionnelle quand cette distance varie. La description de l'appareil avec lequel j'ai constaté ce nouveau cas d'équilibre, et le calcul par lequel j'en ai conclu la relation dont je viens de parler, sont le principal objet du Mémoire que j'ai l'honneur de présenter à l'Académie. Mais, comme ce calcul ne peut se faire qu'à l'aide d'une transformation par laquelle j'ai exprimé la fonction des trois angles \(x, \beta, \gamma \), que je viens de nommer \(\rho \), en différentielles partielles de la distance des deux portions infiniment petites de courants électriques que l'on considère, je crois devoir d'abord expliquer cette transformation.

Soient BM et B'M' (fig. 2) deux lignes représentant des fils conducteurs, et qui seront, en général, deux courbes à double courbure; supposons que \(s \) et \(s' \) représentent les arcs BM et B'M', comptés depuis les points fixes B et B', \(Mm = ds, M'm' = ds' \) seront deux portions infiniment petites de ces conducteurs, et leurs directions seront déterminées par les deux tangentes MT et M'T': en nommant \(r \) la distance MM', \(r \) sera évidemment une fonction des deux variables indépendantes \(s \) et \(s' \); si l'on abaisse des points \(m, m' \) les perpendiculaires \(me, m'e' \) sur MM', qui pourront être considérées comme de petits arcs de cercles.
Détermination de la formule élémentaire.

décrits respectivement des centres M' et M, et qu'on prenne les angles α et β de manière qu'ils aient leur ouverture tournée du même côté, comme je l'ai supposé dans le calcul de la valeur de ρ, l'angle α étant pris, par exemple, entre la direction MT de Mm et le prolongement MK de $M'M$, et l'angle β entre la direction $M'T'$ de $M'm'$ et la ligne $M'M$ elle-même, on aura ces deux équations

$$
\cos \alpha = \frac{dr}{ds},
$$

$$
\cos \beta = \frac{dr}{ds},
$$

parce que ce point M' reste fixe quand s varie seul dans la fonction r, et le point M quand c'est s'; on tire de là

$$
\cos \alpha \cos \beta = -\frac{dr}{ds} \frac{dr}{ds} \ (1).
$$

En différentiant la valeur de $\cos \beta$ par rapport à s, on trouve

$$
\frac{d^3}{ds} \sin \beta = \frac{d^3 r}{ds ds}.
$$

mais, quand le point M est transporté en m et que s devient, par conséquent, $s + ds$, l'angle β diminue évidemment, tant que l'angle γ des deux plans $MM'T$, $MM'T'$ est aigu, d'une quantité qui est la projection de l'angle $MM'm$ sur le plan $MM'T'$; et, comme cet angle est infiniment petit, on a

$$
\frac{d^3}{ds} = -MM'm \cos \gamma,
$$

valeur qui s'applique aussi au cas où γ est un angle obtus, parce qu'alors β augmente avec s.

Mais l'angle $MM'm$ a pour mesure

$$
\frac{mc}{M'M} = \frac{ds \sin \alpha}{r} ;
$$

(1) On trouverait

$$
\cos \alpha \cos \beta = \frac{dr}{ds} \frac{dr}{ds},
$$

si l'on prenait pour α et β les angles $MM'T$, $MM'T'$, dont les ouvertures sont tournées en sens contraires; mais le résultat du calcul ne serait point changé parce que ce changement de signe de $\cos \alpha \cos \beta$ entraînerait celui de la valeur de κ quand on déterminerait κ, et donnerait, par conséquent, la même valeur pour

$$
\sin \alpha \sin \beta \cos \gamma + k \cos \alpha \cos \beta.
$$

(A.)
ainsi
\[\frac{d^2 \alpha}{ds^2} = - \frac{\sin \alpha \cos \gamma}{r}, \]
d'où il suit que
\[\sin \alpha \sin \beta \cos \gamma = - r \frac{d^2 r}{ds ds}. \]
En substituant ces valeurs de \(\sin \alpha \sin \beta \cos \gamma \) et de \(\cos \alpha \cos \beta \) dans celle de \(\rho \), on obtient
\[
\rho = - \left(r \frac{d^n r}{ds ds} + k \frac{dr}{ds} \frac{dr}{ds} \right) = - r^{1-k} \left(r^k \frac{d^3 r}{ds ds} + kr^{k-1} \frac{dr}{ds} \frac{dr}{ds} \right) \\
= - r^{1-k} \frac{d}{ds} \left(r^k \frac{dr}{ds} \right) = - r^{1-k} \frac{d(r^{1+k} \frac{dr}{ds})}{ds}. \]
Comme c'est la quantité
\[\sin \alpha \sin \beta \cos \gamma + k \cos \alpha \cos \beta \]
que nous avons représentée par \(\rho \), on a cette formule de Trigonométrie analytique, qui pourrait peut-être recevoir d'autres applications,
\[\sin \alpha \sin \beta \cos \gamma + k \cos \alpha \cos \beta = - r \frac{k}{1+k} \frac{d^3(r^{1+k} \frac{dr}{ds})}{ds ds}. \]
Si l'on y suppose \(k = 1 \), elle devient
\[\sin \alpha \sin \beta \cos \gamma + k \cos \alpha \cos \beta = \frac{d^3(r^2)}{ds ds}. \]
et, si l'on représente par \(x, y, z \) trois coordonnées rectangulaires du point \(M \), et par \(x', y', z' \) celles du point \(M' \) rapportées aux mêmes axes, \(x, y, z \) varieront seules avec \(s \), et \(x', y', z' \) avec \(s' \), d'où il suit, à cause de
\[r^2 = (x' - x)^2 + (y' - y)^2 + (z' - z)^2, \]
que
\[\frac{d \left(\frac{r^2}{2} \right)}{ds'} = (x' - x) \frac{dx'}{ds} + (y' - y) \frac{dy'}{ds} + (z' - z) \frac{dz'}{ds}. \]
et que
\[\frac{d^3 \left(\frac{r^2}{2} \right)}{ds ds'} = - \frac{dx}{ds} \frac{dx'}{ds'} - \frac{dy}{ds} \frac{dy'}{ds'} - \frac{dz}{ds} \frac{dz'}{ds'}. \]
on aura donc
\[\sin \alpha \sin \beta \cos \gamma + \cos \alpha \cos \beta = \frac{dx}{ds} \frac{dx'}{ds'} + \frac{dy}{ds} \frac{dy'}{ds'} + \frac{dz}{ds} \frac{dz'}{ds}, \]
qui est évidemment la valeur du cosinus de l'angle formé par les directions de \(Mm \) et de \(M'm' \); le cosinus de cet angle se trouve ainsi égal à
\[\sin \alpha \sin \beta \cos \gamma + \cos \alpha \cos \beta, \]
ce qui est d'ailleurs évident par le principe fondamental de la Trigonométrie sphérique.

Si l'on nomme \(i \) et \(i' \) les actions exercées à la distance \(r \) dans la situation où
\[\alpha = \beta = \frac{\pi}{2} \quad \text{et} \quad \gamma = 0, \]
ce qui donne \(r = 1 \), par deux portions des fils conducteurs \(BM \) et \(B'M' \) égales à l'unité de longueur, sur une portion égale à la même unité d'un troisième conducteur dont l'énergie électrody
namique soit prise pour l'unité des énergies respectives des divers conducteurs, et qu'on désigne par \(n \) l'exposant de la puissance de la distance de deux portions infiniment petites de conducteurs, à laquelle leur action mutuelle est réciproquement proportionnelle quand cette distance varie seule, il sera aisé de voir, d'après ce que j'ai donné sur ce sujet dans le cahier de septembre du *Journal de Physique* et dans ce Recueil, p. 225 et suivantes (1), que les intensités d'action des deux petites portions de conducteurs que j'ai nommées \(g \) et \(h \) dans la Note du *Journal de Physique* seront représentées ici, à cause que leurs longueurs sont \(ds \) et \(ds' \), par \(i \) \(ds \) et \(i' \) \(ds' \), et que leur action mutuelle le sera par
\[\frac{r^n i ds ds'}{r^n}, \]
l' exposant \(n \) étant égal à 2, si cette action est, toutes choses égales d'ailleurs, en raison inverse du carré de la distance, comme je l'ai admis dès mes premiers travaux sur les phénomènes électro
dynamiques, en me fondant, à la vérité, plutôt sur l'analogie que sur des preuves directes.

(1) *Voir* art. XVIII, p. 261 et suiv. (J.)
En remplaçant dans cette expression la fonction \(\varphi \) par ses valeurs trouvées ci-dessus, elle devient

\[
- r^{1-k-n} \frac{d}{ds} \left(r^k \frac{dr}{ds} \right) \quad i\bar{\nu} \, ds \, ds',
\]

ou

\[
- \frac{r^{1-k-n}}{1+k} \frac{d^2(r^{1+k})}{ds \, ds'} \quad i\bar{\nu} \, ds \, ds'.
\]

Si l'on désigne, conformément à une notation employée dans divers Ouvrages, et notamment dans le *Traité de Mécanique* de M. Poisson (t. I, art. 171), par \(dr \) la différentielle de la distance \(r \) relative au déplacement du point \(M \), et par \(d'r \) la différentielle de la même distance relative au déplacement du point \(M' \), en sorte que ce qui, d'après la notation ordinaire, est exprimé par

\[
\frac{dr}{ds} \quad ds,
\]

le soit par \(dr \), que \(ds' \) soit remplacé par \(d's' \), et que

\[
\frac{dr}{ds'} \quad ds',
\]

le soit par \(d'r \), on pourra écrire ces deux valeurs ainsi :

\[
- \bar{\nu} r^{1-n} \frac{k}{k} \frac{d^2}{ds \, ds'} (r^k \, d' r),
\]

\[
- \frac{r^{1-n-k}}{1+k} \frac{d^2}{ds \, ds'} (r^{1+k}).
\]

On pourra se servir de celle de ces deux valeurs qui, dans chaque cas particulier, conviendra mieux au but qu'on se propose ; la première est la plus commode dans le cas où je m'en suis servi pour déterminer la relation entre \(n \) et \(k \) qui résulte de ma nouvelle expérience. Pour faire usage de ces formules, on calculera la valeur de \(r \) en fonction des six coordonnées des deux points \(M \) et \(M' \), soit que ces coordonnées soient trois droites perpendiculaires, ou deux droites et un angle, ou deux angles et une droite, et l'on en déduira, par de simples différentiations, les valeurs des différentielles partielles de \(r \) qui entrent dans la formule qu'on emploie, en ayant soin de ne faire varier que les trois coordonnées du point \(M \) dans les différentiations marquées par le signe \(d' \), et que celles du point \(M' \) dans les différentiations que représente le signe \(d' \).
DETERMINATION DE LA FORMULE ÉLÉMENTAIRE.

Un des avantages de la valeur que nous venons de trouver pour ρ consiste à ce qu'on peut n'exécuter, relativement aux coordonnées qu'on a choisies, que la différentiation relative au changement de position d'un des points M ou M', et se contenter d'indiquer l'autre, ce qui simplifie beaucoup les calculs dans certains cas, comme on le verra quand je déterminerai la valeur de k, d'après le fait nouveau que j'ai observé et qui me reste à expliquer.

Ce fait peut être énoncé ainsi :

Un circuit fermé circulaire ne peut jamais produire de mouvement continu toujours dans le même sens, en agissant sur un conducteur mobile d'une forme quelconque qui part d'un point de l'axe élevé perpendiculairement sur le plan de ce circuit par le centre du cercle dont il forme la circonférence, et qui se termine

à un autre point du même axe, lorsque le conducteur mobile ne peut se mouvoir qu'en tournant autour de cet axe.

Pour s'en assurer par l'expérience, on adapte à la tige TT' ($fig. 3$) une coupe annulaire C qui est isolée de la tige par un tube de verre Mm, et qui communique avec la coupe S'' par l'équerre en cuivre NnS''.

La spirale représentée ($fig. 2$, p. 194), à l'aide de laquelle on produit le mouvement continu dans l'appareil ($fig. 1$, p. 193), plonge, par ses deux extrémités, dans les coupes S'' et S''' ($fig. 3$). Le conducteur mobile, appuyé par la pointe K dans la coupe S', se compose
de deux parties KFGH et KEDB égales et semblables pour que la terre n’agisse pas sur ce conducteur; elles sont réunies par un cercle BH concentrique à la tige TT’: à ce cercle est attachée une pointe A qui plonge dans le mercure de la coupe O. On établit les communications en plongeant, par exemple, le rhéophore positif dans S et le rhéophore négatif dans S’; le courant se partage alors entre les deux directions STKEDBAONS’ et STKFGHAONS’; arrivé ainsi dans la coupe S’, il parcourt la spirale LL” (fig. 2, p. 194) et se rend dans la coupe S” (fig. 3), où l’on fait plonger l’appendice L”M” (fig. 2, p. 194), et qui est en communication avec l’extrémité négative de la pile par le rhéophore venant de cette extrémité qu’on y a fait plonger. Tout étant ainsi disposé, le conducteur mobile BDEFGH ne tourne plus d’une manière continue, comme celui de la fig. 1, p. 193, mais il ne prend aucun mouvement ou bien il oscille autour d’une position d’équilibre stable. On s’assure aisément que l’action serait complètement nulle si la spirale était construite avec une parfaite régularité; mais, comme il est difficile qu’il en soit ainsi, on voit varier la position d’équilibre avec les irrégularités de la spirale, et quand on fait un peu changer la forme de cette spirale, en la pressant avec la main, on a une nouvelle position d’équilibre; mais, dans aucun cas, on ne peut produire de mouvement continu ('). Il convient, pour que les actions des portions ST, nS’ sur le conducteur mobile se détruisent mutuellement, que, quand on fait cette expérience, ces deux portions soient placées l’une au-dessous de l’autre, à la plus petite distance possible.

Considérons maintenant un courant circulaire horizontal dirigé

(') J’ai trouvé, depuis, que l’action est encore nulle lorsqu’on remplace le conducteur spiral faisant plusieurs tours, chacun d’une circonférence entière, par un conducteur CDEFG (fig. 1) plusieurs fois redoublé, et dont la portion DEF forme un demi-cercle dont le centre est dans l’axe du conducteur mobile abedef’c’d’e’f’y, comme les portions CD, FG ne peuvent, d’après ce qui a été dit (p. 275), agir sur ce conducteur mobile, il ne reste que l’action de la demi-circonférence DEF sur la portion la plus voisine bêdê, dont les deux extrémités sont dans l’axe, action qui, d’après l’expérience, n’imprime à cette portion aucune tendance à tourner toujours dans le même sens, quelle que soit sa position relativement au diamètre servant de corde au demi-cercle, d’où il suit évidemment que la même chose aurait lieu pour un conducteur fixe formant un arc de cercle quelconque, ainsi que je l’ai supposé dans le calcul qui donne la relation entre α et k.

(A.)
en M' (fig. 4) suivant la tangente $M'T'$, et agissant sur une portion infiniment petite d'un conducteur mobile BM, assujetti à tourner autour de la verticale AZ passant par le centre A du cercle dont le courant horizontal parcourt la circonférence et dont nous nommerons le rayon a; AZ étant pris pour axe des z, la verticale MN sera l'ordonnée z du point M, prenons pour les deux autres coordonnées de ce point la distance $AN = u$, et l'angle $XAN = t$,

\[r^2 = MN^2 + N'M^2 = z^2 + a^2 + u^2 - 2au \cos(t' - t), \]

expression où t' varie seul quand le point M' se déplace, en sorte que

\[d'r = \frac{aud't' \sin(t' - t)}{r}, \]

et que l'action d'une portion infiniment petite du courant horizontal situé en M' sur une portion infiniment petite du conducteur BM située en M est représentée par

\[- au r^{n-2} d't' d'[r^{k-1} u \sin(t' - t)], \]

si l'on décompose cette force suivant la ligne MO perpendiculaire au plan $AMKN$, et qu'on abaisse du point M' sur le rayon ANK la perpendiculaire $M'K = a \sin(t' - t)$, qui sera évidemment parallele à MO, il faudra, pour avoir la composante suivant MO, multiplier la force suivant MM', dont nous venons de trouver la valeur, par

\[\frac{M'K}{MM'} \]
ce qui donnera
\[-a^2 i\ell' d' r^{n-k} u \sin(t'-t) d' r^{k-1} u \sin(t'-t)\];

en multipliant cette quantité par la distance MQ = u du point M à l’axe AZ, on aura, pour le moment de rotation,
\[-a^2 i\ell' d' r^{n-k} u \sin(t'-t) d' r^{k-1} u \sin(t'-t)\]:
telle est l’action exercée par le petit arc ds’ du conducteur fixe horizontal pour faire tourner le petit arc ds du conducteur mobile autour de cet axe; en l’intégrant relativement aux différentielles désignées par d, on aura cette action telle qu’elle est exercée par le petit arc ds’ sur tout le conducteur mobile; or, d’après l’expérience qui prouve que cette action est nulle toutes les fois que ses deux extrémités sont dans l’axe, il faudra que l’intégrale soit nulle toutes les fois qu’elle sera prise entre deux limites pour lesquelles u = 0, quelle que soit d’ailleurs la forme du conducteur mobile et sa position relativement au petit arc ds’ situé en M’, c’est-à-dire, quelles que soient les valeurs de r et de t en fonctions de u qu’il faudrait substituer à r et à t pour intégrer de u = 0 à u = 0, si cette quantité n’était pas une différentielle exacte par rapport aux trois quantités r, t, u qui varient avec la position du point M; or on sait que, pour que la valeur d’une intégrale soit ainsi indépendante des relations des variables qui y entrent, et reste toujours la même entre les mêmes limites, il faut qu’elle se présente sous la forme d’une différentielle exacte entre ces variables considérées comme indépendantes, ce qui ne peut avoir lieu ici, à moins qu’on n’ait
\[k = \frac{n - 1}{2}\]

ou
\[k = \frac{1 - n}{2}\].

Telle est la relation que l’expérience démontre exister entre k et n. Quand n = 2, on a \(k = \frac{1}{2}\), mais, quelle que soit la force des analogies qui portent à penser que n est, en effet, égal à 2, on n’en a aucune preuve déduite directement de l’expérience, puisque toutes les expériences faites à ce sujet l’ont été en faisant agir un conducteur voltaïque sur un aimant, et ne s’appliquent, par conséquent, que par une extension, qu’on ne peut regarder comme une démonstration complète, à l’action mutuelle de deux portions infiniment petites de courants électriques.
La relation ci-dessus donne
\[n = 1 - 2k; \]
ce qui réduit la valeur de cette action à
\[- ii^* r^k d(r^k d^r), \]
ou à
\[- \frac{ii^* r^k d d^r (r^k + k)}{1 + k}. \]

Dans la séance du 24 juin 1822, je lus, à l'Académie royale des Sciences, une Note additionnelle à ce Mémoire, où je tirai de ma formule, mise sous cette forme, deux résultats remarquables : le premier s'obtient lorsqu'on décompose la force que l'élément \(ds \) exerce sur l'élément \(ds' \), dans la direction de ce dernier, en la multipliant par
\[\cos \beta = \frac{dr}{d^s}, \]
ce qui donne
\[\frac{ii^*}{d^s} r^k d' r d(r^k d^r), \]
dont l'intégrale, par rapport \(d \), est
\[\frac{ii^*(r^k d^r)^2}{2d^s} + C = \frac{1}{2} ii^* r^k d^s s' \cos^2 \beta + C', \]
qu'il faut prendre entre les limites marquées par les deux extrémités du conducteur BM (fig. 2). Si ce conducteur forme un circuit complètement fermé, les valeurs de \(r \) et de \(\cos \beta \) seront les mêmes aux deux limites, puisque ces limites se trouveront au même point, et l'intégrale sera, par conséquent, nulle, d'où il suit que la résultante de toutes les actions exercées par un circuit fermé sur une petite portion de conducteur est toujours perpendiculaire à la direction de cette petite portion. Je remarquai, à ce sujet, qu'il en devait être de même d'un assemblage quelconque de circuits fermés, et, par conséquent, d'un aimant, lorsqu'on le considère comme tel, conformément à mon opinion sur la cause des phénomènes magnétiques, et c'est,
en effet, ce qui résulte de plusieurs expériences dues à divers physiciens.

Le second résultat consiste en ce que, la valeur de \(k \) étant négative (\(^1\)), l'expression de l'action mutuelle de deux portions infiniment petites de courants voltaïques,

\[
\frac{i^2 (\sin \alpha \sin \beta \cos \gamma - k \cos \alpha \cos \beta)}{r^6},
\]

devient négative quand on suppose que les deux angles \(\alpha \) et \(\beta \) tournés du même côté sont nuls, en sorte que les deux petites portions doivent se repousser quand elles se trouvent sur une même droite et qu'elles sont dirigées vers le même point de l'espace; j'en tirai cette conclusion, que toutes les parties d'un même courant rectiligne se repoussent mutuellement, que c'était probablement la cause des effets connus du moulinet électrique,

\(^1\) En vertu de l'équation \(k = \frac{1 - n}{2} \), la valeur de \(k \) n'est négative qu'autant que \(n \) est plus grand que \(1 \); c'est pourquoi, avant d'avoir vérifié, par l'expérience décrite (p. 330), que cette valeur est, en effet, négative, je m'étais assuré que celle de \(n \) est plus grande que \(1 \). Pour cela, après avoir trouvé, par un calcul très simple, que, quand on suppose \(n = 1 \), un conducteur fixe, de quelque forme qu'il soit, ne peut exercer aucune action sur un conducteur circulaire situé dans le même plan, et que l'action entre ce conducteur circulaire et un conducteur rectiligne doit être attractive ou répulsive pour une même position de ces conducteurs, suivant que \(n \) est plus grand ou plus petit que \(1 \), j'avais fait cette expérience dès le mois de mai 1822, et j'avais constaté que l'action dont il s'agit n'est pas nulle, et qu'il résulte du sens dans lequel elle a lieu que \(n \) est plus grand que \(1 \) et que \(k \) est, par conséquent, négatif, en me servant du conducteur mobile représenté en \(\text{abcdefg{}hi{}k{}y} \) (fig. 5), sur lequel je faisais agir le conducteur vertical \(\text{AB} \). La figure que j'en donne ici me paraît suffisante pour qu'on en ait une idée complète et pour qu'il soit inutile d'en donner une description détaillée.

\((A.\) \)
qu’ainsi ces effets devaient être considérés comme le premier phénomène électrodynamique observé, et qu’on ne devait plus les expliquer comme on le fait communément.

Quoique les deux petites portions de courants électriques ne soient alors dirigées dans le même sens qu’en apparence, et qu’on doive plutôt les considérer comme par courant en sens contraire les deux côtés d’un angle de 200°, la répulsion, dans ce cas, était une chose si inattendue qu’il était nécessaire de la vérifier ; on verra plus loin (art. XXV) que j’ai depuis fait cetteexpérience avec M. Auguste de La Rive, et qu’elle a complètement réussi. Nous observâmes ensemble, le 9 septembre 1822, que la répulsion a lieu, en effet, entre un courant établi dans le mercure et ce même courant prolongé dans un fil conducteur flottant, soit qu’il passe du mercure dans le fil ou du fil dans le mercure, en sorte qu’il est impossible d’attribuer ce phénomène, parfaitement semblable à celui du moulinet électrique, excepté que l’air est ici remplacé par le mercure, aux causes auxquelles on l’a attribué jusqu’à présent, dans le seul cas où on l’avait observé, celui où il a lieu dans l’air.