ANNALES
DE
HIMIE ET DE PHYSIQUE,
PAR MM. GAY-LUSSAC ET ARAGO.
TOME QUARANTE-HUITIÈME.

A PARIS,
ex CROCHARD, Libraire, rue et place de l'Ecole-de-Médecine, n° 13.
1831.
dant que cette communication est interrompue, on peut ensuite la rétablir sans qu'il y ait aucune action sur le galvomètre ; mais alors, en enlevant l'aimant, on a toute l'action qui aurait eu lieu dans le même cas, après l'action contraire produite par l'entrée de l'aimant pendant que la communication aurait été établie.

*Experiences sur les Courants électriques produits par l'influence d'un autre courant; par M. Ampère.*

Pendant mon séjour à Genève au mois de septembre 1822, M. Auguste de La Rive voulut bien m'aider dans les expériences que je désirais de faire sur la production d'un courant électrique par l'influence d'un autre courant ; il eut la bonté de disposer dans son laboratoire tout ce qui m'était nécessaire pour ces expériences, dont les résultats furent publiés peu de temps après dans la Bibliothèque universelle et dans les Annales de Chimie et de Physique. Nous avions suspendu à un fil de soie très-fin dans le plan d'un fil conducteur revêtu de soie et formant des tours despirale redoublés, un cercle de cuivre en dedans et très-près de ces tours. Nous présentions à ce cercle un fort aimant en fer à cheval, de manière qu'un des pôles se trouvait au dedans et l'autre au dehors du cercle. Dès que nous faisions communiquer avec la pile les deux extrémités du fil conducteur, le cercle était attiré ou repoussé par l'aimant, suivant le pôle qui répondait à l'intérieur du cercle ; ce qui démontrait l'existence du courant électrique qui y était produit par l'influence du courant du fil conducteur. La découverte que vient de faire M. Faraday des courants électriques produits par l'influence d'un aimant, cou-
rans qu'avait obtenu Fresnel en 1820, mais qu'il n'avait pas cru suffisamment constaté par ses expériences, m'a porté naturellement à employer le galvanooscope multiplicateur, dont l'illustre chimiste anglais a fait usage, pour constater de nouveau et étudier dans toutes ses circonstances la production d'un courant électrique par un autre courant.

Les résultats ont été tels qu'il était facile de le prévoir, et l'identité des effets produits par une hélice ou par un aimant s'est soutenue dans tous les détails des phénomènes.

Ces expériences ont été faites avec un appareil dont la construction est due à M. Simon, préparateur du cours de physique générale et expérimentale au Collège de France. Il a vu le premier la production des courants électriques dans le cas que je vais décrire, nous en avons constaté ensemble les diverses circonstances.

L'instrument dont nous nous sommes servis se compose de trois hélices redoublées en spirale; la première est celle d'un galvanooscope ou multiplicateur de Schweiger; elle est destinée à agir sur deux aiguilles aimantées attachées ensemble, suivant deux lignes parallèles dans des directions opposées et suspendues par un fil très-fin, l'une au dedans, l'autre au-dehors de cette première hélice; ce galvanooscope est celui de l'appareil thermoscopique de M. de Nobili. La seconde consiste dans un fil de millimètre de diamètre recouvert de soie et enveloppé sur un cylindre creux en bois, où il fait cent tours, dans un enfoncement pratiqué sur sa surface convexe comme la gorge d'une poule. Les deux extrémités de ce fil communiquent avec les deux extrémités de celui du
galvanoscope, de manière qu'on puisse à volonté inter-
rompre et rétablir cette communication. Je désignerai
ce logement de l'appareil sous le nom de cylindre électro-
moteur, parce que c'est lui qui fait mouvoir le galva-
scope quand il est influencé par un aimant. Dans mon
appareil le creux de ce cylindre a 4 ou 5 centimètres de
diamètre. La troisième hélice, celle dont le fil est en com-
muication avec les deux extrémités de la pile, était formée
d'un fil de cuivre recouvert de soie et de 1 millimètre de
diamètre formant trois hélices en recouvrant l'une
autour de l'autre ; ce fil faisait quatre cents tours, et il
en résultait un cylindre électro-dynamique d'environ 16
centimètres de long et de 4 centimètres de diamètre.
C'est cette partie de l'appareil que je désignerai dans ce
qui suit en la nommant simplement l'hélice.

Nous nous sommes assurés qu'à la distance d'environ
deux mètres, que la longueur des communications entre
le galvanoscope et le cylindre électro-moteur nous per-
mettaient de mettre entre le galvanoscope et l'hélice, celle-ci
n'exerçait aucune action sensible sur les aiguilles aînées
du galvanoscope.

Voici maintenant les résultats de nos expériences :
l'hélice étant en communication avec la pile, et le gal-
vanoscope avec le cylindre électro-moteur, 1° chaque
fois qu'on place l'hélice dans ce cylindre, l'aiguille du
galvanoscope est déviée précisément comme quand on y
place un barreau aimanté, les pôles de l'hélice étant
dans la même situation respective que ceux de l'aimant.

2°. Cette action est de même instantanée dans les
deux cas, l'aiguille reprenant sa première position après
quelques oscillations.
3°. En retirant l’hélice on observe une déviation égale en sens contraire de celle qui a eu lieu à l’entrée; et qui a toujours lieu dans le même sens, quel que soit le côté du cylindre électro-moteur par lequel on retire l’hélice précisément comme quand on retire l’aimant du même cylindre.

4°. Cette action est également instantanée.

5°. Le sens du courant excité par l’hélice dans le cylindre électro-moteur est opposé à celui du courant de cette hélice, de même que celui qui y est excité par l’action de l’aimant a lieu en sens contraire des courants de cet aimant, conformément aux résultats obtenus par M. Faraday.

6°. Les actions qui, d’après les expériences que j’ai faites avec M. Becquerel, communiquées à l’Académie dans sa séance du 23 janvier dernier, ont lieu lorsqu’on fait entrer un aimant dans le cylindre électro-moteur par des sauts successifs et qu’on l’on fait sortir ensuite de la même manière, en sorte qu’une déviation se manifeste à chaque saut, dans un sens depuis une extrémité de l’aimant jusqu’à son milieu et en sens contraire depuis ce milieu jusqu’à l’autre extrémité; ces actions, dis-je, sont produites avec toutes les mêmes circonstances en substituant une hélice à l’aimant, et l’on observe dans les deux cas qu’en portant rapidement le milieu, soit de l’aimant, soit de l’hélice, au centre du cylindre électro-moteur, on a une déviation égale à la somme de toutes celles qui ont lieu à chacun de ces sauts, en y comprenant la première déviation produite en plaçant dans le plan de ce cylindre l’extrémité seulement de l’hélice ou de l’aimant. Cette première déviation fait ce-
pendant une plus grande portion de la déviation totale qu'on obtient en y portant tout de suite leur milieu, lorsqu'on se sert d'une hélice, que quand on emploie un aimant, parce que tous les courants électriques de l'hélice sont de même intensité, tandis que l'intensité des courants de l'aimant est, comme je l'ai établi depuis long-temps, plus grande à son milieu qu'elle ne l'est vers ses extrémités.

7°. Tant qu'il n'y a point de changement dans la situation respective de l'hélice et du cylindre électromoteur, on peut rompre ou rétablir la communication de ce cylindre et du galvanoscope sans qu'il y ait aucune action, comme quand il y a un aimant au lieu d'hélice.

8°. Mais si, après avoir placé l'aimant ou l'hélice dans le cylindre électro-moteur, la communication n'étant pas établie, et avoir ensuite rétabli la communication sans qu'il y ait aucune action d'après ce qui vient d'être dit, on vient à enlever l'aimant ou l'hélice, on a l'action de sortie précisément comme elle aurait eu lieu dans le cas où elle aurait été précédée d'une action d'entrée.

9°. On a, en se servant d'une hélice au lieu d'aimant, la possibilité d'anéantir et de recréer alternativement, sans la déplacer, l'action qu'elle exerce, en suspendant et rétablissant alternativement le courant électrique qui la parcourt, soit en interrompant et rétablissant alternativement la communication entre l'hélice et la pile, soit en enlevant les couples de la pile des vases remplis d'eau acidulée et en les y replongeant alternativement. Dans l'un et l'autre cas, la suspension du courant électrique et son rétablissement dans l'hélice produisent pré-
casement les mêmes effets que l'on obtient en calévant ou en replaçant, soit l'hélice, soit l'aimant, dans la spirale.

L'identité des actions produites par un aimant ou une hélice électro-dynamique ayant ses deux extrémités aux pôles de l'aimant, démontrée par tant d'expériences dans les circonstances les plus variées, et par les calculs qui en partant de la formule qui représente l'agion de deux élements de courants électriques, déduite uniquement de celles faite sur des courants électriques, donnent pour l'action mutuelle de deux aimans très-projets ou particules magnétiques, la même expression qu'on trouve en partant de l'ancienne hypothèse sur la nature des aimans; cette identité, dis-je, n'avait pas besoin des nouvelles preuves qui résultent de ces expériences, elle suffisait pour en prévoir les résultats; mais les physiciens n'en verront pas, je pense, avec moins de plaisir cette nouvelle vérification d'une théorie qui rassemble tous les phénomènes magnétiques à ceux qui produisent l'électricité en mouvement.

Je me sers ici de cette expression parce que c'est celle qu'ont employée jusqu'ici tous les physiciens qui se sont occupés de ces phénomènes; car, comme je l'ai dit et imprimé plusieurs fois, cette identité est indépendante de l'idée qu'on se fait sur la nature de ce qui se passe dans le fil conducteur joignant les deux extrémités d'une pile de Volta.

En comparant les résultats de ces expériences avec celles de M. Arago, sur l'action qui s'exerce entre un aimant ou une hélice électro-dynamique et un disque métallique, lorsque leur position relative change,
soit parce qu'on fait osciller l'aimant ou l'hélice en présence du disque, soit parce qu'on fait tourner le disque, on voit qu'elles ne sont qu'une autre manifestation d'un même fait général, savoir que pendant que l'aimant ou l'hélice s'approche d'un corps conducteur, il s'y produit par influence un courant électrique instan
tané en sens contraire de celui de l'aimant ou de l'hélice, d'où résulte une action répulsive entre ces deux corps, et qu'au contraire lorsque l'aimant ou l'hélice s'écarte du corps conducteur, le courant électrique qui s'y forme par influence se renverse tout-à-coup, en sorte qu'il se trouve alors dans le même sens que celui de l'aimant ou de l'hélice, et qu'il y a attraction entre les deux corps.

Il est aisé de voir en effet que des trois actions reconnues par M. Arago dans les expériences dont nous avons parlé, l'une suivant la tangente de l'arc décrit par le point du disque en mouvement dont elle émane, l'autre perpendiculaire au plan du disque et la troisième suivant le rayon, la première vient de ce qu'il y a à la fois répulsion entre l'aimant ou l'hélice et les points du disque qui vont en s'en approchant, attraction entre l'aimant ou l'hélice et les points du disque qui vont en s'en éloignant, et que ces deux actions tendent également à faire suivre, soit à l'aimant, soit à l'hélice, le mouvement du disque.

Quant aux deux autres actions, l'une perpendiculaire au plan du disque, l'autre suivant le rayon, elles résultent évidemment de ce que les courants électriques produits par influence pendant que les points du disque s'approchent de l'aimant ou de l'hélice subsistent encore, ainsi que la répulsion qui en résulte, à l'instant où ils se
trouvent précisément vis-à-vis, puisqu'ils ne se renversent qu'ensuite et à mesure qu'ils s'en éloignent; d'où il suit que tous ces points, situés sur le rayon correspondant du disque, repoussent, soit l'aimant, soit l'hélice, ce qui produit une répulsion perpendiculaire au plan du disque et une force parallèle à ce rayon tendant vers la circonférence ou vers le centre, suivant que la distance entre le centre du disque et l'extrémité de l'aimant ou de l'hélice sur laquelle ils agissent est plus ou moins grande.


(Traduit dell'Antologia di Firenze.)

M. Faraday a découvert récemment une nouvelle classe de phénomènes électro-dynamiques; il a présen
t à ce sujet à la Société royale de Londres un Mémoire qui n'a pas encore été publié, et que nous connaissons se
tement par la simple notice que M. Hachette communi
cqua à l'Académie des Sciences de Paris, d'après une lettre qu'il avait reçue de M. Faraday lui-même. Cette relation nous inspira subitement le désir, à M. le che
cvalier Antinori et à moi, de répéter l'expérience fondamentale et de l'étudier sous divers aspects. Comme nous
tions d'être parvenus à des résultats de quelque importance, nous nous hâtons de les publier sans atten
tre préambule que la notice même qui a servi de point de départ à nos recherches (suit la notice que nous avons déjà donnée page 403).